Knowledge needed prior to introducing Table Sticks	
Equal and unequal groups	$\mathrm{Y} 1-$ Summer term
	Y 2 - Spring term
Combining equal group	Y 1 - Summer term
quantities	Y 2 - Spring term
Unitising	EYFS - Autumn (1-3) , Spring (4 -
	$8)$, Summer (9 - 10)
	Y 1 - Autumn
Relationship between repeated	Y 1 - Summer term
addition and the times sign	Y 2 - Spring term

Table Sticks teaching timetable

Table Sticks teaching timetable	
Year 1	A daily 15 minute session from Spring 2
Year 2	A daily 15 minute session
Year 3	A daily 15 minute session
Year 4	A daily 15 minute session

Class	Revisit and Revise	New Learning
R	Doubling numbers to 10 Halving numbers to 10	
1	Doubling numbers to 10 Halving numbers to 10	$0 x 1 x, 10 x$
2	$0 x 1 x, 10 x$	$2 x, 5 x, 3 x$
3	$2 x, 5 x, 3 x$	$4 x, 6 x, 8 x$
4	$4 x, 6 x, 8 x$	$7 x 9 x 11 x 12 x$
5	$0 x 1 x, 2 x, 3 x, 4 x, 5 x, 6 x, 7 x$, $8 x, 9 x, 10 x, 11 x, 12 x$	Square numbers 0x0 to 12×12 Cubed numbers $0 x 0$ to 12×12 Prime Numbers to 19
6	$0 x 1 x, 2 x, 3 x, 4 x, 5 x, 6 x, 7 x$, $8 x, 9 x, 10 x, 11 x, 12 x$	Square numbers $0 x 0$ to $12 x 12$ Cubed numbers $0 x 0$ to $12 x 12$ Prime Numbers to 19

Assessment

- All children to complete an MTC score at the end of every half term using a assessments completed on iPad/computers.
- Scores / 25 to be recorded on Insights.
- Maths lead to monitor.

Interventions

- Pupils will be given daily interventions of table sticks to ensure they can maintain at the level of the rest of the class using methods taught from table sticks.
- For SEND pupils who fall behind at a significant rate and table sticks intervention having no impact, pupils to be taught by rote their times tables.

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
EYFS Doubles					Double/halving	Double/having
Year 1 Revise Doubles New Learning $1 x, 10 x$	Mastering Number Numbots	Mastering Number Numbots	Mastering Number Numbots	Tables Sticks Doubles/Halving to 12 NL-0x Revision/MTC (timed PowerPoint)	Tables Sticks R-doubles/halving NL - $1 x$ table Revision/MTC (timed PowerPoint)	Tables Sticks R-Recap 1x NL - 10x table Revision/MTC (timed PowerPoint)
Year 2 Revise $1 x, 10 x$ New Learning $2 x, 5 x, 3 x$	Tables Sticks $R-1 x 10 x$ NL $-2 x$ Revision/MTC (timed PowerPoint)	Tables Sticks $R-2 x$ $N L-5 x$ Revision/MTC (timed PowerPoint)	$\begin{aligned} & \quad \text { Tables Sticks } \\ & \mathrm{R}-1 \times 10 \times 2 \times 5 \mathrm{x} \\ & \mathrm{NL}-3 \mathrm{x} \\ & \text { Revision/MTC (timed } \\ & \text { PowerPoint) } \end{aligned}$	Tables Sticks $R-2 \times 5 \times 3 \times 10 x$ Daily recap lessons teacher to target any misconceptions/gaps in knowledge and address. Revision/MTC (timed PowerPoint)	Tables Sticks $R-2 \times 5 \times 3 \times 10 x$ Daily recap lessons teacher to target any misconceptions/gaps in knowledge and address. Revision/MTC (timed PowerPoint)	Tables Sticks $R-2 \times 5 \times 3 \times 10 x$ Daily recap lessons teacher to target any misconceptions/gaps in knowledge and address. Revision/MTC (timed PowerPoint)

Year 3	Tables Sticks					
2x, 5x, 3x,	$R-3 x$	$R-6 x 2 x$	$R-4 x$	$R-2 x 4 x 8 x$	$\mathrm{R}-4 \times 8 \times$ (2 weeks)	$\begin{aligned} & R-2 x 3 x 4 x 5 x 6 x 8 x \\ & 10 x \end{aligned}$
$4 x, 6 x, 8 x$	$N L-6 x$	$N L-4 x$	$N L-8 x$	$R-3 x 6 x$	Daily recap lessons teacher to target any misconceptions/gaps in knowledge and address.	Daily recap lessons teacher to target any misconceptions/gaps in knowledge and address.
	Revision/MTC (timed PowerPoint)					
Year 4 Revise $4 x, 6 x, 8 x$	Tables Sticks					
	$\begin{aligned} & R-2 \times 5 \times 10 x \\ & R-3 x 6 x \end{aligned}$	R -3 x 6 x 4 x 8 x $\mathrm{NL}-7 \mathrm{x}$	$R-7 x 9 x$ $N L-11 x$	$\begin{aligned} & R-0 \times 1 \times 2 \times 3 \times 4 \times 5 x \\ & 6 \times 7 \times 8 \times 9 \times 10 \times 11 x \\ & 12 x \end{aligned}$	$\begin{aligned} & R-0 \times 1 \times 2 \times 3 \times 4 \times 5 \times 6 x \\ & 7 \times 8 \times 9 \times 10 \times 11 \times 12 x \end{aligned}$	$\begin{aligned} & R-0 \times 1 \times 2 \times 3 x 4 \times 5 x \\ & 6 \times 7 \times 8 \times 9 \times 10 \times 11 x \\ & 12 x \end{aligned}$
7x 9x 11x 12x	$R-4 x 8 x$	$N L-9 x$	NL - 12x	Daily recap lessons teacher to target any misconceptions/gaps in knowledge and address.	Daily recap lessons teacher to target any misconceptions/gaps in knowledge and address.	Daily recap lessons teacher to target any misconceptions/gaps in knowledge and address.
	Revision/MTC (TTRS sound check)	MTC Test	Revision/MTC (TTRS sound check)			

Table Sticks Teaching Sequence				
Introduce Introduce each times table with making links to the real world e.g. 7-7 colours of the rainbow, 7 harry potter books, 7 days a week	Pattern Explore the patterns chn can use e.g. landmark numbers (1x $5 x 10 x$), relationships between numbers (e.g. 7-7 colours of the rainbow, 7 harry potter books, 7 days a week)	Concrete resources Teaching resources to use alongside teaching the times table e.g. numicon, tens frames, base 10, counters.	Learn Time allocated for pupils to learn the times tables, apply their pattern/number relationship knowledge to apply.	Consolidate Whole class consolidation of the times tables, quick fire questions, TT rockstars battles, whole class questions.
1 x	It's the same as the 1's counting pattern A number x by 1 is itself.	Numicon 1's used to show the number being made Counters to show the number is a tens frame for subitising	Learn 1 x through to 12 x Count forwards and backwards in 1 x Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL
10 x	If you know your $1 \times$ then you know your 10 x by making each number a multiple of 10.	Numicon 1's and 10s - represent the $1 x$ table with the numicon 1 s and then show the pattern using numicon 10s Tens frames to show the increase of a 10 each time Base 10 to show the lots of 10 each time	Learn 1 x through to 12 x Count forwards and backwards in $1 \times$ Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL
2 x	You can use your knowledge of doubles to help you find 2 x . 2 x is the same as doubling a number. Repeated addition of the same number.	Numicon to show the doubling e.g. two lots of 2 numicon pieces, two lots of 4 numicon pieces. Tens frames to show the doubling of counters in 2 different frames/coloured counters. Show arrays with numicon for repeated addition e.g. $3 \times 2=2+2+2$	Learn 1 x through to 12 x Count forwards and backwards in 1 x Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL

5 x	If you know your 10 x then you can use your halving knowledge to find the $5 x$ $5 x$ a number is half of $10 x$ a number	Numicon 5's to show the increase of 5 each time Numicon to show halving e.g. numicon 5 on top of numicon 10 to show the relationship between double/halving Show arrays with numicon for repeated addition e.g. $4 \times 5=5+5+5+5+5$ Show relationship with numicon 5 and 10 - pattern goes multiple of 5 , multiple of 10 etc...	Learn 1 x through to 12 x Count forwards and backwards in 1 x Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL
3 x	Landmark numbers $1 \times 5 \mathrm{x}$ 10 x Pupils will know 2 x from prior knowledge Double 2 x for 4 x Double $4 x$ for $8 x$ Use 5 x for 6 x 7 x Use 10 x for $9 \times 11 \times 12 \mathrm{x}$ Chn will be able to use commutative law from knowledge of $1 \times 2 \times 5 \times 10$ x	Numicon 3's to show the increase of 3 each time Tens frames to add 3 each time to support with subitising. Match sticks to show lots of 3 and make shapes e.g. 1×3 - make a triangle 2×3 - make 2 triangles etc Show arrays with numicon for repeated addition e.g. $2 \times 3=3+3$	Learn 1 x through to 12 x Count forwards and backwards in 1 x Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL
4 x	Landmark numbers $1 \times 5 \mathrm{x}$ 10 x Pupils will know $2 \times 3 \times$ from prior knowledge Double 2 x for 4 x Double 4 x for 8 x Use 5 x for 6 x 7 x Use $10 \times$ for $9 \times 11 \times 12 \times$ Chn will be able to use commutative law from	Numicon 4's to show the increase of 4 each time Tens frames to add 4 each time to support with subitising. Match sticks to show lots of 4 and make shapes e.g. 1×4 - make a square Show arrays with numicon for repeated addition e.g. $6 \times 4=4+4+4+4+4+4$	Learn 1 x through to 12 x Count forwards and backwards in 1 x Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL

	knowledge of $1 \times 2 \times 5 \times 10$ x 3 x			
6 x	Landmark numbers $1 \times 5 \mathrm{x}$ 10 x Pupils will know $2 \times 3 \times$ from prior knowledge Double $3 x$ to find the $6 x$ table Use 10 x for $9 \times 11 \times 12 \mathrm{x}$ Chn will be able to use commutative law from knowledge of $1 \times 2 \times 5 \times 10$ x $3 \times 4 x$	Numicon 6's to show the increase of 6 each time Tens frames to add 6 each time to support with subitising. Match sticks to show lots of 6 and make shapes e.g. 1×6 - make a hexagon Show arrays with numicon for repeated addition e.g. $3 \times 6=6+6+6$	Learn 1 x through to 12 x Count forwards and backwards in 1 x Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL
7 x	Landmark numbers $1 \times 5 \mathrm{x}$ 10 x Pupils will know $2 \times 3 \times$ from prior knowledge Double 2 x for 4 x Double 4 x for 8 x Use 5 x for 6 x 7 x Use $10 \times$ for $9 \times 11 \times 12 \mathrm{x}$ Chn will be able to use commutative law from knowledge of $1 \times 2 \times 5 \times 10$ x 3 x	Numicon 7's to show the increase of 7 each time Tens frames to add 7 each time to support with subitising. Show arrays with numicon for repeated addition e.g. $3 \times 7=7+7+7$	Learn 1 x through to 12 x Count forwards and backwards in 1 x Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL
8 x	Landmark numbers $1 \times 5 \mathrm{x}$ 10 x Double $4 x$ to find the $8 x$ table Use 10 x for $9 \times 11 \times 12 \mathrm{x}$ Chn will be able to use commutative law from knowledge of $1 \times 2 \times 5 \times 10$ x $3 \times 4 x$	Numicon 8's to show the increase of 8 each time Tens frames to add 8 each time to support with subitising. Show arrays with numicon for repeated addition e.g. $3 \times 8=8+8+8$	Learn 1 x through to 12 x Count forwards and backwards in 1 x Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL

9 x	Landmark numbers $1 \times 5 \mathrm{x}$ 10 x Pupils will know $2 \times 3 \times$ from prior knowledge Double 2 x for 4 x Double 4 x for 8 x Use 5 x for 6 x 7 x Use $10 \times$ for $9 \times 11 \times 12 \times$ Chn will be able to use commutative law from knowledge of $1 \times 2 \times 5 \times 10$ $\mathrm{x} 3 \times 4 \times 6 \times 7 \times 8 \mathrm{x}$	Numicon 9's to show the increase of 9 each time Tens frames to add 9 each time to support with subitising. Teach the $9 x$ table trick using hands. Show arrays with numicon for repeated addition $\text { e.g. } 3 \times 9=9+9+9$	Learn 1 x through to 12 x Count forwards and backwards in $1 x$ Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL
11 x	Landmark numbers $1 \times 5 \mathrm{x}$ 10 x Pupils will know $2 \times 3 \times$ from prior knowledge Double 2 x for 4 x Double 4 x for 8 x Use 5 x for 6 x 7 x Use 10 x for $9 \times 11 \times 12 \mathrm{x}$ Chn will be able to use commutative law from knowledge of $1 \times 2 \times 5 \times 10$ x $3 \times 4 \times 6 \times 7 \times 8 \times 9 \times$	Base 10 to show representing the number in tens and ones as a 2 digit number. Show arrays with base 10 for repeated addition e.g. $3 \times 11=11+11+11$	Learn 1 x through to 12 x Count forwards and backwards in 1 x Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL
12 x	Landmark numbers $1 \times 5 \mathrm{x}$ 10 x Chn will be able to use commutative law from knowledge of $1 \times 2 \times 5 \times 10$ $\mathrm{x} 3 \times 4 \times 6 \times 7 \times 8 \times 9 \times 11 \mathrm{x}$	Chn should know $12 \times$ from all prior knowledge of the times table covered. Show arrays with base 10 for repeated addition e.g. $3 \times 12=12+12+12$	Learn 1 x through to 12 x Count forwards and backwards in 1 x Missing numbers Learning landmark answers first Learning doubles	TT rockstars class battles Class questions Quick fire questions Whiteboard AFL

